Parameter Estimation: A Glimpse of Backing Out, Sensitivity Analysis & Meta-Analysis

Nathaniel Osgood CMPT 858

Sources for Parameter Estimates

- Surveillance data
- Controlled trials
- Outbreak data
- Clinical reports data
- Intervention outcomes studies
- Calibration to historic data
- Expert judgement
- Systematic reviews

Content redacted for copyright compliance

Introduction of Parameter Estimates

Table II.2.1 Smoking and mortality from tuberculosis (Notes: Unless otherwise stated, numbers in parentheses are 95% confidence intervals; OR=odds ratio and RR=relative risk.)								
Reference	Population	Methodology	Results					
(Gajalakshmi et al., 2003)	Urban and rural populations in Tamil Nadu, India	Large case-control study looking at impact of smoking (cigarette and bidis) on mortality due to medical causes in men age 25-69; ever (current and former) smokers are compared to never smokers	RR for ever smokers compared to never-smokers of death from TB, standardized for age, education level and tobacco chewing: Urban Rural Cigarette 4.5 (4.0-5.0) 2.1 (1.6-2.9) Bidi 3.7 (2.9-4.6) 4.2 (3.7-4.8)					
(Gupta et al., 2005)	Mumbai, India	Large cohort study (initial cohort includes 99,570, 97.7% follow-up 5.5 years later) investigating tobacco-attributable mortality among men and women age 35 and over; ever (current and former) tobacco users are compared to never users	Matrix Men Women Smokeless and smoked) by gender, unadjusted: Men Women Smokeless (>=35) 1.5 (1.1-2.0) 1.4 (1.0-2.0) Smokel (>=35) 2.3 (1.7-3.2) 5.9 (2.3-15.2) Smokeless (35-69) 1.6 (1.1-2.2) Smokel (35-69) 2.5 (1.8-3.5)					
(Lam et al., 2001)	Hong Kong	Large case-control study looking at the impact of cigarette smoking (proxy or self-reported current or former versus never-smoking status 10 years prior to death) on mortality due to medical causes in men over age 35	RR for smokers compared to non-smokers of death from TB, controlling for age and education:35-692.5 (1.2-5.2) over 70over 701.6 (1.0-2.6)Dose response: RR for smokers compared to non- smokers, controlling for age and education:Avg # cigs/day1-1415-2425+Test for trend35-691.02.96.6p<0.001 over 701.31.43.3p<0.01					
(Liu et al., 1998)	Urban and rural populations in China	Large case-control study looking at impact of smoking (defined as current or former smoking 6-8 years prior to death) on mortality due to neoplastic, respiratory, or vascular causes in men and women 35-69	$\begin{array}{rrrr} RR \mbox{(standard error) for smokers compared to non-smokers of death from TB, adjusting for age at death and study area: Urban men 1.4 (0.05) Rural men 1.2 (0.04) Urban women 1.6 (0.09) Rural women 1.3 (0.09) Dose response: RR (standard error) for smokers compared to non-smokers, adjusting for age at death and study area: Avg # cigs/day 1-19 20 >20 Urban men 1.2 (0.06) 1.5 (0.07) 2.0 (0.14) Rural men 1.0 (0.06) 1.2 (0.07) 1.6 (0.14) Age initiate <20 20-24 >24 Urban men 1.9 (0.08) 1.4 (0.06) 1.2 (0.06) Rural men 1.3 (0.06) 1.2 (0.05) 1.1 (0.06) \end{tabular}$					
(Sitas et al., 2004)	All of South Africa	Case-control study investigating impact of smoking (defined as reported smoking five years prior to death) on mortality due to medical causes known to be associated with smoking in men and women over age 25	OR for smokers compared to nonsmokers of death from TB, controlling for age, sex, education, ethnicity, and disease: Men 1.7 Women 1.5 Overall 1.6 (1.2-2.1)					

Preparation for Pooling

TB Disease: Active exposure

							0136836	. Active es	.posui e						
		95%	IJ 6			TB									
study	RR	CI-I	CI-u	subgroup	%	Outcome	expnot	expnothi	evnev	evnevhi	currnot	currnoth	currnevhi	exnevhi	n
Adelstein	4.55	2.40	8.64	curr		PTB	0	0	0	0	0	0	1	0	73287
Adelstein	2.34	0.95	5.76	ex		PTB	0	0	0	0	0	0	0	1	73287
Adelstein	4.13	2.18	7.82	evNev		PTB	1	1	1	1	0	0	0	0	73287
Adelstein	3.40	2.06	5.63	currNot		PTB	0	0	0	0	1	1	0	0	73287
Alcaide	3.60	1.50	2.20	evNev		PTB	1	1	1	1	0	0	0	0	92
Ariyothai	2.70	1.04	6.97	current	78%	PTB	1	1	1	1	0	0	1	0	128
Ariyothai	2.88	0.85	9.78	ex	22%	PTB	0	0	0	0	0	0	0	1	128
Buskin	1.30	0.80	2.10	current	69%	AIITB	0	0	0	0	0	0	0	0	696
Buskin	1.40	0.80	2.50	ex	31%	AIITB	0	0	0	0	0	0	0	0	696
Crampin	0.90	0.50	1.70	cig/dayLight	37%	PTB	0	0	0	0	0	0	0	0	606
Crampin	1.30	0.70	2.40	cig/dayHeavy	37%	PTB	1	1	.1	1	0	0	1	0	606
Crampin	1.60	0.70	3.20	ex	25%	PTB	0	0	0	0	0	0	0	1	606
Gajalakshmi	2.90	2.60	3.30	currNot		SRTB	0	0	0	0	0	0	0	0	235101
Kolappan	2.24	1.27	3.94	unclear		PTB	1	1	0	0	0	0	0	0	544
Leung2004	2.87	2.00	4.11	current	31%	PTB	1	1	1	1	0	0	1	0	42659
Leung2004	1.39	0.98	1.97	ex	69%	PTB	0	0	0	0	0	0	0	1	42659
Leung2003	2.13	1.46	3.11	youngEver		PTB	1	0	1	0	0	0	0	0	8686
Leung2003	1.90	1.35	2.66	OlderEver		PTB	0	0	0	0	0	0	0	0	8686
Lienhardt	2.03	1.22	3.39	current	79%	PTB	1	0	1	0	0	0	0	0	1376
Lienhardt	1.53	1.11	2.10	ex	21%	PTB	0	0	0	0	0	0	0	0	1376
Perez-Padilla	1.50	1.00	2.30	evNev		PTB	1	0	1	0	0	0	0	0	833
Shah	1.59	0.44	5.37	unclear		PTB	1	0	0	0	0	0	0	0	75
Tekkel	4.62	2.44	8.73	current	80%	PTB	1	0	1	0	0	0	0	0	492
Tèkkel	2.27	1.00	5.14	ex	20%	PTB	0	0	0	0	0	0	0	0	492
Tocque	2.33	1.40	3.88	currNot		PTB	1	1	0	0	1	1	0	0	310
Toledo	1.30	1.00	1.60	evNev		PTB	1	0	1	0	0	0	0	o	477
Yu	2.17	1.29	3.63	currNot		PTB	1	1	0	0	1	1	0	0	30289

Abbreviations: explot exposed versus not exposed; exploth exposed versus not exposed, high quality studies; evnev ever versus never smokers; evnevhi ever versus never smokers, high quality studies; currnot current versus not current smokers; currnothi current versus not current smokers, high quality studies; currnev current versus never smokers; exnev ex versus never smokers; currnevhi current versus never smokers, high quality studies; exnevhi ex versus never smokers, high quality studies; PTB pulmonary TB; AllTB all types of TB (pulmonary and extrapulmonary); SRTB self-reported TB disease (any type)

	TB Hortancy										
		95%	6 CI		тв						
study	RR	CI-L	CI-u	subgroup	Outcome	expnot	expnothi	evnev	evnevhi	currnot	n
Gajalakshmi	4.50	4.00	5.00	urbanPop	Mortality	1	0	1	0	0	33,220
Gajalakshmi	4.20	3.70	4.80	ruralPop	Mortality	1	0	1	0	0	33,220
Lam	2.54	1.24	5.22		Mortality	1	1	1	1	0	13,251
Liu	1.42	1.33	1.52	urbanMalePop	Mortality	1	1	1	1	0	18,331
Liu	1.17	1.09	1.25	ruralMalePop	Mortality	1	1	1	1	0	18,331
Sitas	1.61	1.23	2.11		Mortality	1	0	0	0	1	2,366

TR Mortality

Abbreviations: expnot exposed versus not exposed; expnothi exposed versus not exposed, high quality studies; evnev ever versus never-smokers; evnevhi ever versus never-smokers, high quality studies; currnot current versus not current smokers

Example of Other Pooling

Treatment Default

	Quality			9.	5% CI	
	Score	Exposure	RR	CI-I	CI-u	n
Al-Hajjaj	NR	υ	1.85	1.33	2.58	154
Balbay	NR	CNot	3.99	1.90	8.35	628
Chang	70.59	EN	2.90	1.73	4.85	408
Davidson	NR	CNot	1.34	0.87	2.07	354
Salami	63.16	U	1.61	1.31	1.98	1530
Santha	NR NR	U	2.10	1.30	3.40	581

Abbreviations: NR not rated; U unclear; Cnot current versus not current smoker; EN ever versus never smoker

Smear Conversion

	Quality			9	5% CI	
	Score	Exposure	RR	CI-I	CI-u	n
Abal	63.64	EN	0.47	0.21	1.06	339
Durban	66.67	υ	0.58	0.40	0.84	347
Leung2003	61.11	EN	0.89	0.21	3.77	404

Abbreviations: EN ever versus never smoker; U unclear

Severity of TB: Risk of smear-positive (versus smear-negative) 95% CI Quality Score Exposure RR CI-I CI-u n Altet-Gomez 70.59 1.60 CNot 1.40 1.30 13038 Leung2003 61.11 EN 1.30 1.00 1.80 851

Abbreviations: Cnot current versus not current smoker; EN ever versus never smoker

Severity of TB: Risk of pulmonary (versus extra-pulmonary only)

	Quality			9	5% CI		
	Score	Exposure	RR	CI-I	CI-u	n	n
Altet-Gomez	70.59	CNot	PTB	1.50	1.30	1.60	13038
Altet-Gomez	70.59	Cnot	ETB only	0.67	0.77	0.63	13038
Leung2004	80.95	CEN-curr	ETB only	0.73	0.16	3.46	286
Leung2004	80.95	CEN-ex	ETB only	1.77	0.72	4.35	286
Leung2003	61.11	EN	ETB only	0.31	0.13	0.71	851
Musellim	NR	EN	ETB only	0.54	0.32	0.93	375

Note: Values in bold were used in the metaanalysis

Abbreviations: NR not rated; Cnot current versus not current smoker; CEN-curr current versus never smoker; CEN-ex ex versus never smoker; EN ever versus never smoker

Severity of TB: Risk of cavitary (versus not cavitary)

	Quality			95%	CI	
	Score	Exposure	RR	CI-I	CI-u	n
Altet-Gomez	70.59	CNot	1.90	1.60	2.30	13038
Leung2003	61.11	EN	1.76	1.18	2.63	851
	Abbrevia	ations: Cnot	current versus	not current	smoker: EN	V ever

versus never smoker

Pooled Results

	Pooled	95%	6 CI		Test for hetero-	#Populations	#Individuals
,	estimate	Lower	Upper	Method	geneity (p-value)	included	included
Pooled estimate for odds ratio of being in	fected fo	or smol	kers con	npared to	non-smokers		
All definitions of active exposure included							
Exposed v. non-exposed							
High quality only	1.76	1.46	2.12	Fixed	0.36	4	4,460
Overall	1.76	1.47	2.12	Fixed	0.53	5	4,729
By study-specified definition of exposure							I
Ever v. never-smoker	•						
High quality only	1.66	1.34	2.04	Fixed	0.50	2	3,742
Overall	1.66	1.36	2.04	Fixed	0.77	3	4,011
Current v. not-current							
High quality only	2.24	1.47	3.40	Fixed	0.29	2	718
Overall	2.24	1.47	3.40	Fixed	0.29	2	718
Pooled estimate for odds ratio of develop	ing pulm	onary '	TB disea	se for smo	okers compared to	non-smokers	
All definitions of active exposure included							
Exposed v. non-exposed							
High quality only	2.64	2.07	3.38	Random	0.04	8	147,915
Overall	2.28	1.77	2.95	Random	<0.001	14	159,854
By study-specified definition of exposure	1						I
Ever v. never-smokers							
High quality only	2.86	2.04	4.01	Random	0.03	5	116,772
Overall	2.34	1.68	3.24	Random	< 0.001	10	128,636
Current v. not current							
High quality only	2.59	1.93	3.48	Fixed	0.42	3	103,886
Overall	2.59	1.93	3.48	Fixed	0.42	3	103,886
Current v. never							
High quality only	2.61	1.59	4.27	Random	0.05	4	116,680
Overail	2.72	1.88	3.93	Random	0.04	6	118,548
Ex v. never							
High quality only	1.56	1.17	2.09	Fixed	0.54	4	116,680
Overall	1.59	1.29	1.95	Fixed	0.71	6	118,548
Passive v. never (all TB)							
	3.35	2.03	5.54	Fixed	0.32	3	480
Pooled estimate for odds ratio of mortali	ty from 1	B for s	mokers	compared	to non-smokers		
All definitions of active exposure included	l I						
Exposed V. non-exposed	1.75		1 64	Deedem	-0.001		21 502
High quality only	1,35	1.11	1.04	Random	<0.001	3	51,582
By study specified definition of exposure	2.24	1.34	3.15	Random	<0.001	0	07,100
Ever v pever-smokers							
High quality only	1 25	1 1 1	1.64	Pandom	<0.001	2	21 502
Overall	2 30	1 35	4 24	Random	<0.001	5	64 802
Current v. not-current	2.35	1.55	4.24	Kandoni	~0.001	2	04,002
Overall	1 61	1 23	2 1 1	Penarted		1	2 766
Realed estimate for other relative risk of	1.01	1.23	2.44	Reported	non omekens	•	2,300
Pooled estimate for other relative risk es	umates	tor sme	DKETS CO	mpared to	non-smokers		
reatement default	1.95	1.53	2.50	Kandom	0.05	6	3,655
Smear conversion	0.57	0.41	0.80	Fixed	0.74	3	1,090
Severity of TB: Risk of smear+ TB	1.39	1.26	1.53	Fixed	0.64	2	13,889
Severity of TB: Risk of ETB only	0.66	0.60	0.73	Fixed	0.21	3	14,175
Severity of TB: Risk of cavitary TB	1.88	1.59	2.21	Fixed	0.73	2	13,889

Forest Plot

Relative risk of being infected for exposed versus non-exposed (active smokers)

Forest Plot 2

Relative risk of having TB disease for exposed versus non-exposed (active smokers)

Hassmiller, K. M. (2006). *The Impact of Smoking on Population-Level Tuberculosis Outcomes*. Unpublished PhD. University of Michigan. Ann Arbor. Ann Arbor.

Sensitivity Analyses

- Same relative or absolute uncertainty in different parameters may have hugely different effect on outcomes or decisions
- Help identify parameters that strongly affect
 - Key model results
 - Choice between policies
- We place more emphasis in parameter estimation into parameters exhibiting high sensitivity

Types of Sensitivity Analyses

- Variables involved
 - One-way
 - Multi-way
- Type of component being varied
 - Parameter sensitivity analysis: Parameter values
 - Structural sensitivity analysis: Examine effects of Model structure on results

- Type of variation
 - Single alternative values
 - Monte Carlo analyses:
 Draws from probability distributions (many types of variations)
- Frequency of variation
 - Static (parameter retains value all through simulation)
 - Ongoing change: Stochastic process
 - Accomplished via Monte-Carlo analyses

Example Spider Diagram

Content

redacted

for

copyright

compliance

- Each axis represents a % change in a particular parameter
 - This proportional change is identical for the different parameters
- The distance assumed by the curve along that axis represents the magnitude of response to that change
 - Note that these sensitivities will depend on the state of system!

http://www.niwotridge.com/images/BLOGImages/SpiderDiagram.jpg

Systematic Examination of Policies

Tengs, T., Osgood, N., & Lin, T. (2001). Public health impact of changes in smoking behavior: results from the Tobacco Policy Model. *Medical Care, 39*(10), 1131-1141.

Sensitivity in Initial Value

- Frequently we don't know the exact state of the system at a certain point in time
- A very useful type of sensitivity analysis is to vary the initial value of model stocks
- In Vensim, this can be accomplished by
 - Indicating a parameter name within the "initial value" area for a stock
 - Varying the parameter value

Imposing a Probability Distribution Monte Carlo Analysis

- We feed in probability distributions to reflect our uncertainty about one or more parameters
- The model is run many, many times (realizations)
 - For each realization, the model uses a different draw from those probability distribution
- What emerges is resulting probability distribution for model outputs

Example Resulting Distribution

Static Uncertainty

Multi-Way Sensitivity Analyses

- When examining the results of changing multiple variables, need to consider how multiple variables vary together
- If this covariation reflects dependence on some underlying factor, may be able to simulate uncertainty in underlying factor

Performing Monte Carlo Sensitivity Analyses in Vensim

- Need to specify three things
 - The parameters to vary
 - How to vary those parameters
 - Which model variables to save away

How & What Parameters to Vary

Model Values to Save Away

Savelist Co	ntrol. Edit the filename to save changes to a	different control file	,
Filename:	Simple SIR.lst	Choose New File	e Clear Settings
List of Varia	ables to be Saved (drag to reorder)		
Susceptible Infective	3		
Recovered Incidence	1	_	Delete Selected
Recovery Fraction of	Susceptibles in Population		N M CLAIL
Prevalence		_	Modify Selected
			Add Editina
		_	
			Select
For subscrip	nted variables leave the subscripts off to save	e all elements	
		Cance	

Monte Carlo Analyses

Sensitivity Results (Prevalence)

Sensitivity Results (Fraction of Susceptibles)

raction of Susceptibles in Population

Stochastic Processes

- Examples of things stochastically approximated
 - Stock market
 - Rainfall
 - Oil prices
 - Economic growth
- What considered "stochastic" will depend on the scope of the model
 - Detailed model: Individual behaviour, transmission, etc.
 - A meteorological model may not consider rainfall stochastic

Stochastic Processes

Dealing with Data Gradients

- Often we don't have reliable information on some parameters, but do have other data
 - Some parameters may not be observable, but some closely related observable data is available
 - Sometimes the data doesn't have the detailed breakdown needed to specifically address one parameter
 - Available data could specify sum of a bunch of flows or stocks
 - Available data could specify some function of several quantities in the model (e.g. prevalence)
- Some parameters may implicitly capture a large set of factors not explicitly represented in model
- There are two big ways of dealing with this: manually "backing out", and automated calibration

"Backing Out"

- Sometimes we can manually take several aggregate pieces of data, and use them to collectively figure out what more detailed data might be
- Frequently this process involves imposing some (sometimes quite strong) assumptions
 - Combining data from different epidemiological contexts (national data used for provincial study)
 - Equilibrium assumptions (e.g. assumes stock is in equilibrium. Cf deriving prevalence from incidence)
 - Independence of factors (e.g. two different risk factors convey independent risks)

Example

- Suppose we seek to find out the sex-specific prevalence of diabetes in some population
- Suppose we know from published sources
 - The breakdown of the population by sex (c_M , c_F)
 - The population-wide prevalence of diabetes (p_T)
 - The prevalence rate ratio of diabetes in women when compared to men (rr_F)
- We can "back out" the sex-specific prevalence from these aggregate data (p_F, p_M)
- Here we can do this "backing out" without imposing assumptions

Backing Out

male diabetics + # female diabetics = # diabetics

- $(p_M * c_M) + (p_F * c_F) = p_T * (c_M + c_F)$
- Further, we know that $p_F / p_M = rr_F = p_F = p_M * rr_F$
- Thus
- $(p_M * c_M) + ((p_M * rr_F) * c_F) = p_T * (c_M + c_F)$ $p_M * (c_M + rr_F * c_F) = p_T * (c_M + c_F)$
- Thus

$$-p_{M} = p_{T}^{*}(c_{M}+c_{F}) / (c_{M} + rr_{F}^{*} c_{F})$$

$$-p_{F} = p_{M}^{*} rr_{F} = rr_{F}^{*} p_{T}^{*}(c_{M}+c_{F}) / (c_{M}^{*} + rr_{F}^{*} c_{F})$$

Disadvantages of "Backing Out"

- Backing out often involves questionable assumptions (independence, equilibrium, etc.)
- Sometimes a model is complex, with several related known pieces
 - Even thought we may know a lot of pieces of information, it would be extremely complex (or involve too many assumptions) to try to back out several pieces simultaneously

Another Example: Joint & Marginal Prevalence

	Rural	Urban	
Male	p _{MR}	p _{MU}	p _M
Female	p _{FR}	p _{MU}	p _F
	p _R	p _U	

Perhaps we know

•The count of people in each { Sex, Geographic } category

•The marginal prevalences (p_R , p_U , p_M , p_F)

We need at least one more constraint

•One possibility: assume $p_{MR} / p_{MU} = p_R / p_U$ We can then derive the prevalences in each { Sex, Geographic } category

Example Tying Together Meta-analysis & Calibration

